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Abstract—We consider a cognitive radio system with N sec-
ondary user (SU) pairs and a pair of primary users (PU). The SU
power allocation problem is formulated as a rate maximisation
problem under PU and SU quality of service and SU peak power
constraints. We show our problem formulation is a geometric
program and can be solved with convex optimisation techniques.
We examine the effect of PU transmissions in our formulations.
Solutions for both low and high signal-to-interference-and-noise
ratio (SINR) scenarios are provided. We show that including
the PU rate in the optimisation problem leads to increased
PU performance while not significantly degrading SU rate.
Achievable rate cumulative distribution functions for various
Rayleigh fading channels are produced.

I. INTRODUCTION

A large number of papers have appeared on various aspects
of cognitive radio (CR) systems, including fundamental in-
formation theoretic capacity limits (see, for example, [1–7]).
In an underlay CR system the secondary users (SUs) protect
the primary user (PU) by regulating their transmit power to
maintain the PU receiver interference below a well defined
threshold level. The limits on this received interference level at
the PU receiver can be imposed by an average/peak constraint
[2], or a minimum value for its signal-to-interference-and-
noise ratio (SINR) [4]. While imposing an additional channel
state information (CSI) requirement [5], the advantage of using
an SINR-based PU protection mechanism is that it removes
the constant interference threshold, thus benefiting the SUs
when the PU link is strong.

Power control in conventional wireless networks has been
extensively studied in the literature [8–10]. Power control in
CR systems presents its own unique challenges. In spectrum
sharing applications, SU power must be allocated in a manner
that achieves the goals of the CR system while not adversely
affecting the operation of the PU. Generally the goals of the
CR are not compatible with the goals of the PU, for instance,
increasing SU power to increase SU capacity will tend to
increase interference to the PU. There is a growing body of lit-
erature on power control and capacity of CR systems. In [11],
soft sensing information was used for optimal power control
to maximise capacity of one SU pair coexisting with one PU
pair. The impacts of SU transmission power on the occurrence
of spectrum opportunities and the reliability of opportunity
detection was analysed in [12]. In [13], dynamic programming
was used to develop a power control strategy for one SU pair
under a Markov model of the PU’s spectrum usage. Optimal

power allocation strategies to achieve the ergodic capacity and
the outage capacity of one SU pair coexisting with one PU pair
under different types of power constraints and fading channel
models were obtained in [6]. Power control using game-
theoretic approaches have been proposed in [14, 15]. Power
control for CR systems using geometric programming have
been proposed in [16–18]. In [17], a CR relay system with
one cognitive source, one relay and a cognitive destination
coexisting with a PU pair was considered and an optimisation
problem to minimise the total CR transmit power under a
peak interference constraint was formulated and solved using
geometric programming. A minimax approach was used in
[18] to minimise the maximum transmit power for a CR
system coexisting with a PU-Rx. The interference caused by
a PU-Tx to the SU-Rxs was not considered in the problem
formulation of [18]. In [16], a distributed approach was used
for power allocation to maximise SU sum capacity under a
peak interference constraint, but the approach did not include
the interference caused by the PU-Tx in the analysis and the
problem was only analysed for a high SINR scenario.

Convex optimisation methods are widely used in the design
and analysis of communications systems. Many problems that
arise in communications signal processing can be cast or
converted into convex optimisation problems which allow an-
alytical or numerical solutions to be calculated easily [19]. In
[20], several problems for designing optimal dynamic resource
allocation in CR systems are formulated and the key role that
convex optimisation plays in finding the optimal solutions is
demonstrated.

In this paper we formulate the SU power allocation problem
as a rate maximisation problem under PU and SU quality of
service (QoS) and SU peak power constraints. We show that
it can be solved using geometric programming and convex
optimisation techniques. Unlike in [16–18], where the PU
interference at each SU-Rx is neglected, we evaluate the
effect of the PU interference by explicitly including it in our
formulations. Solutions for both low and high SINR scenarios
are presented. Most of the cognitive radio literature adopts a
SU centric view and, apart from guaranteeing minimum QoS
to PU, does not consider the PU-SU system as a whole. We
demonstrate that considering the system rate in the optimi-
sation problem results in improved PU performance without
a significant penalty in SU rate. Rate cumulative distribution
functions (CDFs) for various channel conditions are obtained
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Fig. 1. System Model

through solution of our optimisation problems.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a cognitive radio system
with a single PU and N SU transmitters communicating
simultaneously over a common channel to their respective
receivers. Independent, point-to-point, flat Rayleigh fading
channels are assumed for all links in the network. Let gp =

|hp|2, g(ij)
ss = |h(ij)

ss |2, g(j)
ps = |h(j)

ps |2 and g
(i)
sp = |h(i)

sp |2
denote the instantaneous channel powers of the PU-Tx to
PU-Rx, SU-Tx i to SU-Rx j, PU-Tx to SU-Rx j and SU-
Tx i to PU-Rx links, respectively. For notational convenience
we will denote g

(i)
s = giiss. Furthermore, we assume that

the channel powers for the PU and each of the N SUs are
independent and identically distributed (iid) and are governed
by their corresponding parameters Ωp = E(gp), Ωs = E(gs),
Ωss = E(gss), Ωps = E(gps) and Ωsp = E(gsp). The E(·)
denotes the expectation operator.

In our model the SINR at the ith, i = 1, . . . , N , SU receiver
is given by

γ(i)
s =

P
(i)
s g

(i)
s

N∑
j=1,j 6=i

P
(j)
s g

(ij)
ss + Ppg

(i)
ps + σ2

s

(1)

and that at the PU receiver by

γp =
Ppgp

N∑
i=1

P
(i)
s g

(i)
sp + σ2

p

, (2)

where P (i)
s and Pp are the ith SU and PU transmit powers,

respectively, and σ2
s and σ2

p are the additive white Gaussian
noise (AWGN) variance at the ith SU-Rx and PU-Rx, respec-
tively. We also note that that there is a maximum transmit
power constraint, P (i)

s,max, on the SU transmitters which may
be due either to regulatory or hardware limitations. This is
denoted by

P (i)
s ≤ P (i)

s,max.

Additionally, the non-negative vector Ps is used to collec-
tively refer to the set of SU transmit powers, i.e., Ps ,
[P

(1)
s . . . P

(N)
s ]T .

In a cognitive radio system the secondary users are allowed
to operate as long as they can guarantee a certain level of

quality of service (QoS) to the primary user. Hence, in our
analysis we impose an SINR constraint, γT , at the PU receiver

γp ≥ γT.

The rate for a PU with a bandwidth of 1Hz is given by

Rp = log2(1 + γp), (3)

while the SU sum rate is denoted by

RΣ =

N∑
i=1

Ri, (4)

where the individual rate of the ith SU with a bandwidth of
1Hz is given by

Ri = log2

(
1 + γ(i)

s

)
. (5)

Using (3) and (4), the system rate can then be expressed as

Rsys = Rp +RΣ. (6)

The main system variables can be parameterised as follows.
We denote by

c1 =
Ωsp

Ωs
(7)

the ratio of interference to desired channel power. Similarly,

c2 =
γT

PpΩp/σ2
p

(8)

represents the ratio of the minimum target SINR to the mean
signal-to-noise ratio (SNR) at the PU-Rx. Hence, increasing
c2 corresponds to reducing the allowable interference, with
the case of c2 = 1 corresponding to zero average allowable
interference. Finally,

c3 =
Ωss

Ωs
(9)

parametrises the relative channel power of desired to interfer-
ing SU links.

III. SU POWER OPTIMISATION

In this section, we aim to find the SU power allocation
such that the SU sum rate, RΣ, or the system rate, Rsys,
is maximised while maintaining the PU receiver QoS above
the threshold γT, and keeping within the SU transmit power
budget. We may optionally choose to set minimum SINR
thresholds, γ(i)

s,min on the ith SU receiver. This represents a
practical limitation on SU receivers below which the receivers
fail to operate with acceptable performance. In our formulation
we assume that all channel gains are known which allows
us to obtain fundamental limits on achievable rate. However,
in practise the channel gains would need to be estimated,
hence the rates obtained in this paper provide an upper bound.
Mathematically we solve the following suite of optimisation
problems.

1) SU Rate Maximisation with SU QoS Constraints:

maximise
Ps

RΣ

subject to γp ≥ γT (10)

γ(i)
s ≥ γ

(i)
s,min, i = 1, . . . , N

P (i)
s ≤ P (i)

s,max, i = 1, . . . , N
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2) SU Rate Maximisation without SU QoS Constraints:

maximise
Ps

RΣ

subject to γp ≥ γT (11)

P (i)
s ≤ P (i)

s,max, i = 1, . . . , N

3) System Rate Maximisation with SU QoS Constraints:

maximise
Ps

Rsys

subject to γp ≥ γT (12)

γ(i)
s ≥ γ

(i)
s,min, i = 1, . . . , N

P (i)
s ≤ P (i)

s,max, i = 1, . . . , N

4) System Rate Maximisation without SU QoS
Constraints:

maximise
Ps

Rsys

subject to γp ≥ γT (13)

P (i)
s ≤ P (i)

s,max, i = 1, . . . , N

From (4) and (5) it is obvious that maximising the objectives
in (10)–(11) is equivalent to maximising

N∏
i=1

(
1 + γ(i)

s

)
. (14)

Similarly, for (12)–(13) we seek to maximise

(1 + γp) ·
N∏
i=1

(
1 + γ(i)

s

)
. (15)

Problems (10)–(13) can be modified to minimisation problems
by taking the reciprocal of the objectives. The suite of optimi-
sation problems are nonlinear and non-convex and generally
hard to solve [19]. We proceed by dividing our problem into
high and low SINR scenarios.

A. High SINR Scenario

When the SINR is sufficiently high, Rp, RΣ and Rsys can
be approximated by

Rp ≈ log2(γp)

RΣ ≈ log2

(
N∏
i=1

γ(i)
s

)
(16)

Rsys ≈ log2

(
γp ·

N∏
i=1

γ(i)
s

)
.

Using the approximations in (16), the optimisation problems
(10)–(13) can be written in minimisation form as

1) High SINR SU Rate Maximisation :

minimise
Ps

N∏
i=1

(
1

γ
(i)
s

)
subject to γp ≥ γT (17)

γ(i)
s ≥ γ

(i)
s,min, i = 1, . . . , N

P (i)
s ≤ P (i)

s,max, i = 1, . . . , N

2) High SINR System Rate Maximisation :

minimise
Ps

(
1

γp

)
·
N∏
i=1

(
1

γ
(i)
s

)
subject to γp ≥ γT (18)

γ(i)
s ≥ γ

(i)
s,min, i = 1, . . . , N

P (i)
s ≤ P (i)

s,max, i = 1, . . . , N

The second constraint in (17) and (18) is optional and only
included if SU QoS constraints are required.

Problems (17) and (18) fall into a class of optimisation
problems known as geometric programs (GP). A GP is stated
as the following optimisation problem.

minimise f0(x)

subject to fi(x) ≤ 1, i = 1, . . . ,m (19)
hi(x) = 1, i = 1, . . . , p,

where f0, . . . , fm are in a form known as posynomials and
h1, . . . , hp are referred to as monomials [19]. GPs are nonlin-
ear, non-convex optimisation problems but can be transformed
to convex optimisation problems by a logarithmic change of
variables and by taking the logarithm of the objective and
constraint functions [19]. The transformed problem can then be
solved efficiently in polynomial time by interior point methods
[21].

Through straightforward manipulation of the second and
third constraints, problems (17) and (18) can be transformed
into the standard form GP (19). Once in this form, they can
be solved to obtain the optimum SU power allocation.

B. Low SINR Scenario

In the low SINR scenario our rate maximisation optimisa-
tion problems are given by

1) Low SINR SU Rate Maximisation :

minimise
Ps

N∏
i=1

(
1

1 + γ
(i)
s

)
subject to γp ≥ γT (20)

γ(i)
s ≥ γ

(i)
s,min, i = 1, . . . , N

P (i)
s ≤ P (i)

s,max, i = 1, . . . , N

2) Low SINR System Rate Maximisation :

minimise
Ps

(
1

1 + γp

)
·
N∏
i=1

(
1

1 + γ
(i)
s

)
subject to γp ≥ γT (21)

γ(i)
s ≥ γ

(i)
s,min, i = 1, . . . , N

P (i)
s ≤ P (i)

s,max, i = 1, . . . , N

The second constraint in (20) and (21) is optional and only
included if SU QoS constraints are required.

The objectives in problems (20) and (21) are ratios of
posynomials and hence they are not themselves posynomials.
Optimisation problems of this nature are not GP and are
known as Complementary GP [22, 23]. Complementary GPs
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are non-convex problems but can be solved with an iterative
technique known as the single condensation method [22,
23]. In each iteration, the feasible point computed in the
previous iteration is used to approximate the denominator
of the objective monomial. Since a ratio of posynomial and
monomial is a posynomial, the resulting problem is a GP.
The procedure is repeated until the solution converges to an
optimum of the original Complementary GP. It should be noted
that convergence to a local or global minimum is possible.
The posynomial is approximated with a monomial using the
geometric-arithmetic mean inequality∑

i

δivi ≥
∏
i

vδii (22)

where vi ≥ 0, δi ≥ 0 and
∑
i δi = 1. If we let ui = δivi, then

(22) can be written as∑
i

ui ≥
∏
i

(
ui
δi

)δi
. (23)

Note that equality in (23) holds when δi = ui/
∑
i ui. The

term on the left hand side of (23) resembles the denominator
of our objective, i.e. a sum of monomials. Hence, if we
let ui(Ps) be the monomial terms of the denominator and
δi = ui(Ps)/

∑
i ui(Ps), then from (23) it is clear that the

denominator can be approximated around a feasible Ps with
a product of monomials. Since the approximation is always
an under-estimator of the original posynomial, minimising
the condensed objective guarantees that the solution moves
towards a minimum of the original objective function.

For completeness, we present an algorithm that can be used
for solving the low SINR rate maximisation problem [10, 22,
23]:

Algorithm 1 Single Condensation Method

1. Generate a random feasible vector P̃s.
2. Compute the individual monomial terms, ui(P̃s), and the

denominator,
∑
i ui(P̃s), of the objective function using

P̃s.
3. Using results from step 2, compute δi with δi =
ui(P̃s)/

∑
i ui(P̃s).

4. Using δi, form the condensed denominator,∏
i (ui(Ps)/δi)

δi . Note Ps is the optimisation variable.
5. Solve the resulting GP and assign solution to P̃ls, where
l is the loop iteration.

6. Exit loop if ‖P̃ls − P̃l−1
s ‖ ≤ ε, where ε is the error

tolerance.
7. GOTO step 2 with Pls computed in step 5.

IV. SIMULATION RESULTS AND DISCUSSION

We now present simulation results of the optimisation
problems formulated in Section III, specifically evaluating the
CDFs of the resulting rates. We consider a system with N = 3
SUs. In all simulations we have set Pp/σ

2
p = 0 dB and

Ωp/σ
2
p = Ωs/σ

2
s = 6.5 dB, where we assume σ2

p = σ2
s .

Simulations for problems (10) and (12) have γ
(i)
s,min = −10

dB, i = 1, . . . , N . The optimisation problems are solved using
the CVX solver [24]. We consider the following three channel
scenarios

1) Scenario A: Low Interference
In this scenario c1 = c3 = 0.1 which corresponds
to each receiver being approximately 3 times (assum-
ing 1/d2 path loss) further away from the interfering
transmitters than its own transmitter. This results in low
interference between all users, thus making the PU QoS
constraint easy to satisfy.

2) Scenario B: High Interference
In this scenario c1 = c3 = 0.9 which corresponds to
each receiver being approximately the same distance
from all transmitters. This results in high interference
among all users, thus making the PU QoS constraint
difficult to satisfy.

3) Scenario C: Low PU and High SU Interference
In this scenario c1 = 0.1 and c3 = 0.9. Here the
PU experiences low interference from the SUs since
it is approximately 3 times further away from SU-Txs
than the PU-Tx. As a result, the PU QoS constraint is
easily satisfied. However, SU to SU interference is very
prominent.

Results of our proposed methods are compared against the
equal power allocation method and a power profile method
analogous to the “poor man’s waterfilling” method [25] where
we allocate power proportionally to g

(i)
s /g

(i)
sp . We refer to

these methods as ad hoc allocation methods. Note that the ad
hoc allocation methods do not impose a minimum SU QoS
requirement, hence a fair comparison is only possible against
problems (11) and (13). Figures 2–6 show SU sum and PU
rate CDF obtained from optimisation problems (10)–(13) for
the three channel conditions with γT = 2 dB.

Figure 2 shows the SU sum rate CDF of Scenario A along
with results of ad hoc allocation methods. We observe that
problems (10) and (12) result in almost the same performance.
Due to PU and SU QoS requirements, we observe that around
50% of the time no SUs are able to access the channel. Simi-
larly, problems (11) and (13) result in very similar performance
and, due to the PU QoS requirement, no SUs are able to
transmit around 30% of the time. Furthermore, we see that
the ad hoc allocation methods are outperformed by the GP
methods. Figure 3 shows the PU rate CDF resulting from
the four optimisation problems along with the CDF for the
reference case when no SUs are transmitting. It is seen that
the SU power allocation has minor effect on PU operation due
to favourable values of system parameters c1 and c3.

Figure 4 shows the SU sum rate CDF of Scenario B along
with results of ad hoc allocation methods. Once again, we
observe that problems (10) and (12) result in almost the same
performance. Due to PU and SU QoS requirements, around
80% of the time no SUs are able to access the channel.
A solution to this difficulty has been derived, and will be
presented in a future paper. Problems (11) and (13) result
in somewhat similar performance and, due to the PU QoS
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Fig. 2. RΣ CDF for Scenario A, γT = 2 dB.

requirement, no SUs are able to transmit 47% of the time.
Figure 5 shows the PU rate CDF and the effect of SUs
transmission. The discontinuity in the graph corresponds to
the point where the optimisation problems become feasible
and SU transmissions start. Compared to problem (11), we
see that maximising the system rate, problem (13), results
in improved PU performance while not significantly affecting
the SU performance. This implies that it pays to consider the
system rate rather than just SU sum rate.

Figure 6 shows the SU sum rate CDF of Scenario C along
with results of ad hoc allocation methods. Problems (10) and
(12) result in the same performance. Due to PU and SU QoS
requirements around 57% of the time no SUs are able to access
the channel. Similarly, problems (11) and (13) result in same
performance and due to the PU QoS requirement no SUs are
able to transmit around 30% of the time. As expected, higher
rates are achieved in Scenario A compared to Scenario C.
Figure 7 shows PU rate and, as for Scenario A, SU power
allocation has minor effect on the PU.

The mean SU sum rate—problems (11) and (13)—is plotted
in Figure 8 as a function of γT for Scenarios A–C. We observe
that the performance for problems (11) and (13) is very similar
and this reaffirms our finding that considering the system rate
in the optimisation problem does not significantly degrade the
SU performance.

V. CONCLUSIONS

In this paper, we have formulated the SU power allocation
problem in a CR system as a geometric program and obtained
achievable rate CDFs in various channel conditions. We have
included the effect of PU transmission in our formulations and
studied the problem in both high and low SINR scenarios.
More importantly, we have shown that considering system
rate optimisation improves the PU performance while not
significantly degrading the SU performance.
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